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STUDY OF THE GLASS FORMATION OF HIGH TEMPERATURE

SUPERCONDUCTORS--CENTER DIRECTOR' S DISCRETIONARY FUND

FINAL REPORT (PROJECT #89-04)

TECHNICAL MEMORANDUM

INTRODUCTION

The revolutionary and historic advances in high temperature superconductivity starting with

La-Sr-CuO [1] and followed by the discovery of the 123 Y-Ba-CuO, [2] Bi-Sr-Ca-CuO, [3] and

Th-Ba-CuO [4] oxide ceramics have become widely known. It has been shown that the Bi-Sr-

Ca-CuO is a reasonably good glass forming system. [5-8] It was immediately recognized that if

superconducting materials could be melted, formed into glass, and crystallized, there was a

possibility for having a wide range of processing methods to shape the superconductor into

monolithic shapes, filaments, and wires. [9-10]

The purpose of this study was to examine the critical cooling rates and glass formation ability for

oxide high temperature superconducting materials. From the onset, it was known that modifica-

tions to the batch compositions would be required in order to enhance glass formation to the

extent required to form bulk materials. The goal was to produce glass precursor material from

which high superconducting critical transition temperature (T c) crystalline glass ceramics could

be produced.

Besides the obvious advantages of producing useful products from glass preforms, it is believed

that the crystalline grain boundaries formed by in situ crystallization from the glass are fun-

damentally different from the crystal grain boundaries produced by the solid state diffusion

processes. Interesting research into the current-limiting interface could be performed from

detailed studies of superconducting glass ceramics.

EXPERIMENTAL PROCEDURE

The plan of the investigation was to evaluate the glass forming ability with emphasis on the

compositional dependence of glass formation in the BSCCO system. The goaI was to quantify

the glass formation ability of the materials to find the best glass forming compositions. Glass

formation data were obtained from quenching experiments, thermal analysis, and microstructural

analysis studies of the materials.

The six compositions from the system Bi-Sr-Ca-Cu-O examined in this study are shown in Table

1 and are plotted on a lriaxial diagram in Fig. 1 with Bi203 and CuO on two comers and the total

of CaO plus SrO at the third comer. A literature search indicated 2112 and 4334 were prospec-

tive good glass forming candidates (Komatsu et al., 1988; Tatsumisago et al., 1989; Bhargave et

al., 1989). The other compositions, including 2212, 2223, 2234, and 2245, were selected based

on results of the literature search and preliminary results from this work. It should be noted that

the batch proportions 2112, 4334, and 2212 represent the stochiometric proportions of the three

known superconducting phases in this system.
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Table 1. Nominal Compositions (Mole Fraction)

Sample (Bi203)/2 SrO CaO CuO
2112 0.33 0.165 0.165 0.33

4334 0.286 0.21 0.21 0.286

2212 0.286 0.286 0.14 0.286

2223 0.222 0.222 0.222 0.333

2234 0.182 0.182 0.273 0.364

2245 0.154 0.154 0.308 0.385

Glass batches were produced using calcined reagent grade oxides and carbonate powders cal-

cined at temperatures greater than 500 °C and stored in desiccators. The appropriate oxide or

carbonate for each constituent was precisely weighed, the batch was mixed, charged into

platinum crucibles, and melted in a SiC furnace in air at around 1250 °C to 1300 °C for less than

30 minutes. The molten material was very fluid for all the batches tested. To ensure that the

melt was homogeneous, the crucible containing the melt was briefly removed from the furnace

and swirled to mix the liquid and then returned to the furnace.

Splat quenches were performed by pouring the melt onto a graphite plate and pressing with

another graphite plate, both initially at room temperature. Spacers of various thicknesses were

used to produce foils of different thicknesses resulting in a range of cooling rates, with the

thinner samples having the higher cooling rates. The foil-shaped samples were examined and a

subjective qualitative evaluation of the extent of glass formation was made from observations of

the fracture surfaces of the quenched samples using optical and scanning electron microscopy.

For some quench runs the actual cooling rate was measured by inserting a fine (0.005 in.

diameter) wire type S platinum thermocouple into the melt immediately upon pouring and prior

to pressing of the graphite plates. A computer-controlled, rapid thermal analysis system permit-

ted the high resolution and high data rate quenches and the subsequent determination of the

cooling rates of the splatted melts. The temperature data in the form of a millivolt signal from

the thermocouple was collected at 10 ms intervals for a total of 10 seconds via Keithly System

500 Data Acquisition and a MSDOS PC-AT type computer. Unexpected problems were encoun-

tered with the thermocouple measurements. Wildly fluctuating millivolt values representing

temperatures from below zero to several hundred degrees above the starting melt temperature

were recorded in the glass melt. This is attributed to electrical conduction in the melt and

thermoelectric effects between the thermocouple wires and the melt. It was found that an insulat-

ing layer of lacquer applied to the thermocouple usually prevented this electrical interaction

between the melt and the thermocouple elements. The lacquer immediately burnt on contact with

the hot glass and although not every measurement was successful, useful data were obtained in

many cases. Cooling rates ranging from 50 °C/see to 4000 °C/sec were measured.

The rapid thermal analysis apparatus (RTAA) and the high temperature strip heater furnace

designed at MSFC were used to study glass formation in reluctant glass forming systems. The

RTAA consists of an ellipsoidal furnace that has been automated for computer control and data

acquisition; see Fig. 2. Repeated heating and quenching can be accomplished under unattended

software control with thermal data being saved to hard disk in Lotus 123 compatible files.

3
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A snip heater was utilized for sample preparation for use in the RTAA. Pieces of premelted

glass were placed onto Pt snip heater foil. The voltage was ramped up until melting was ob-

served. A prefabricated fine gauge type S platinum thermocouple connected to a thermocouple
meter was inserted into the molten material to produce a superconducting coating on the ther-

mocouple bead.

Differential scanning calorimetry and differential thermal analysis are very useful methods for

the investigation of nucleation kinetics. It was recognized that our group needed a state-of-the-

m system for these studies and to correlate thermal data obtained with known methods with

those obtained with the RTTA. At the beginning of the study a differential scanning calorimeter

was ordered. Due to the long procurement time it did not arrive until nearly 1 year after the

scheduled completion of the study. In the interim we were able to utilize an Omnitherm STA

1500 DTA/TG at the Co-I's UAH laboratory.

The research was focused on the processing of compositions that could form the highest tempera-

ture superconducting phases. Initial experiments indicated that compositions around the

stoichiomenic high T c phase could be quenched to glass quite easily. The glass could then be

transformed into the high Tc phase with the appropriate thermal annealing process. Glass batches

of a number of BSCCO compositions were prepared. The good glasses were crystallized and

annealed in an oxygen-containing atmosphere in the temperature range of 775 °C to 825 °C for

extended times (1 to 48 hours) to develop the high temperature superconducting phases. Super-

conducting properties of nominally 50 mg size samples were determined with a Quantum Design

Magnetic Measurement System SQUID magnetometer using standard procedures.

RESULTS AND DISCUSSION

Some of the results from this study have been reported. [11-14] Figure 3 shows a collection of

optical micrographs of glass samples from four selected compositions in the as-quenched state

prepared by splat quenching between graphite plates. The uniform areas of material without

structural detail are amorphous regions. Some small crystallites are frequently found within the

amorphous continuous phase, but represent only a small fraction of the total bulk material. Glass

formation was confirmed with x-ray diffraction, microscopy, and thermal analysis. The best

glasses were formed from the 2112 and 4334 compositions.

The 2112 batch is the easiest glass former of the set and appears to have the lowest melting

temperature. Glass formation was also found over a wide range of quench rates with both 2112

and 4334. Glass formation is favored by compositions closer to the Bi203 comer of the diagram

(Fig. 1) as indicated from published results with 2.7,1,1,2 and our results with 2112. The two

compositions (4334 and 2212) have the same ratios of Bi203:CuO:SrO (CaO) and therefore

appear on the same point in Fig. 1; however, the glass formation ability is not similar. The 4334

composition has more CaO (less SrO) and is a better glass former. It is also a better high T_ glass

ceramic. This indicates that extra CaO enhances both glass formation and high T¢ properties in

the glass ceramic.

Glass formation ability decreased as the percentage of Bi203 decreased and the series of batches

2223, 2234, and 2245 were relatively poor glass formers. Even splatting to very thin foils did not

produce glasses from these compositions. The latter two melted with difficulty and were also the

poorest glass formers.

5
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Estimates were made of the critical cooling rates for glass formation based on a set of quenches

coveting a wide range of quench rates. Critical cooling rates for formation were measured as low

as 200 °C/sec for the good glass formers and as high as 2000 °C/sec for the poor glass formers.

Typical cooling curves produced by rapid cooling between graphite plates are shown in Figs. 4,

5, and 6. Quench rates from 50 to 4000 °C/sec could be obtained. Analysis of the data was

performed using a spreadsheet to permit plotting the cooling curves and their derivatives to

determine cooling rates. Most of the quenches were in the range from 60 to 800 °C/sec. Table 2

shows qualitative data on the extent of glass formation, sample thicknesses, and quench rates for

some of experiments.

In several hundred quenching experiments with the automated rapid thermal analyzer it was

shown that many of the compositions from the BSCCO system are glass formers without the

addition of glass forming additives. The RTA was also used to quench samples to determine

critical cooling rates. Figures 7a and 8a show quenching and reheating curves, respectively, for

2112, whereas Figs. 7b and 8b show the calculated derivative of the cooling (heating) curve,

which is the instantaneous quenching or heating rate.

Rapid thermal analyzer quenching data from sample 2112 using the automated rapid thermal

analyzer are shown in Fig. 7. Figure 7a shows the temperature data, whereas Fig. 7b shows the

derivative of the temperature data calibrated in °C/sec being equivalent to an uncalibrated plot of

heat capacity. One can see an inflection in the cooling curve at about 780 °C. This is an

anomalous heat capacity effect at glass transition. Before the glass transition the cooling rate is

275 °C/sec and after the glass transition the cooling rate is 325 °C/sec. This indicates that the

heat capacity of the undercooled liquid is more than the heat capacity of the glass, which is
reasonable for most oxides.

Figure 8 shows reheating data from the rapid thermal analyzer for a glass sample of 2112 (8a)

and the calculated delta temperature data (8b). The plot of cooling rate vs. time (temperature) is

very similar to conventional differential thermal analyzer (DTA) data. A peak indicating an

increased heating rate corresponds to an exotherm (i.e., glass crystallization being attributed to a

peak at about 520 °C). Endotherms are indicated by a decrease in the heating rate (i.e., glass

transition at 460 °C). Melting begins with an endotherm at about 760 °C.

Crystallization from glass is most dependent on the viscosity of the undercooled liquid. A

viscometer was ordered and set up for measurements. Utilizing viscosity data for composition

close to 2112, theoretical nucleation and crystal growth calculations were performed with Math-

CAD. Calculations of the crystallization rate were performed. These classical calculations

predicted glass formation in agreement with the _spl-at quenching and RTAA experiments. [13-15]

Based on these experiments we found the crystallization behavior of these glasses is similar to

the LBAN class of fluoride glass. A wealth of information exists for the formation of glass fibers

and bulk performs of the low viscosity fluorides. The same processing methods might be utilized

to produce useful shapes from the high temperature superconductors.

7
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TABLE 2. Glass Formability in the BSCCO System

Composition Thickness (mm) Glass Formation (vp, p, g, vg)*
2112 0.55 g

2112 0.58 g

2112 0.66 vg

2112 0.67 g

2112 0.82 vg

2112 3.87 vp

4334 0.49 g

4334 0.55 vg

4334 1.44 vg

4334 2.12 p

4334 3.22 p

2212 0.49 g

2212 0.51 vg

2212 0.56 g

2212 1.25 vp

2212 1.80 p

2212 3.23 p

2223 0.68 vg

2223 0.70 vg

2223 0.71 vg

2223 0.76 vg

2223 0.92 vg

2223 1.13 vg

2223 1.22 vg

2223 1.29 g

2223 1.35 g

2234 0.59 vg

2234 0.63 vg

2234 0.94 g

2234 0.99 g

2234 1.4 g

2234 1.56 g

2245 0.2 -

2245 thin -

2245 0.91 p

2245 0.94 p

2245 1.41 p

*vp = very poor; p = poor; g = good; vg = very good

11
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Annealing of the glassy specimens in oxygen or air is required to recrystallize the specimen into

a useful superconducting material. Broken, bulk pieces were annealed in air at 800 °C for 20

hours followed by soaking at 825 °C for 86 hours in oxygen. Since 2112 showed signs of

melting at the above conditions, the annealing was performed at 775 °C in air for 20 hours and

then in oxygen for 72 hours. Some measurements of annealed specimens have been made at

UAH with the Quantum Design SQUID Magnetometer, a JEOL SEM, and a Norelco X-Ray

Diffraction Analyzer. Optical microscopy was performed on polished sections of both splatted

and annealed specimens. Based on these observations, it appears two main phases are forming in

these materials after annealing. Depending on the batch composition, the glassy splats show

varying small volume fractions of crystalline inclusions, as may be seen in Fig. 3. All splats for

all batches showed at least a tiny fraction of crystalline phase. Some, like 2212 and 4334,

showed significant quantities of crystalline phases. These phases lose their identity after anneal-

ing. With 4334 splats, the crystalline, acicular, needle-like precipitates were found emanating

inward from the quench surfaces indicating a susceptibility for surface heterogeneous nucleation.

The magnetization vs. temperature of the resulting glass ceramics for four of the samples is

shown in Figs. 9, 10, 11, and 12. Diamagnetism as indicated by a negative value for magnetiza-

tion on this plot is confirmation of the presence of superconducting phases in the sample. The

extent of diamagnetism is proportional to the volume fraction of superconducting phase. Figure

9 shows that the glass ceramic produced from the good glass forming 2112 composition con-

tained primarily one superconducting phase, 2212 with a T c of 82 K. As can be seen in Figs. 10,

11, and 12, glass ceramics from the glass batches 2212, 2223, a0d 4334 contained the same two

superconducting phases, 2212 and 2223, with superconducting transition temperatures of 110 K

and 85 K, respectively. One of the best glass formers, 4334, contained the largest concentration

of the highest onset transition temperature for superconductivity (110 K); see Figure 12.

DTA analysis of the quenched amorphous specimens was performed in air using heating and

cooling rates of 2 °C/min. Glass transition temperatures, crystallization temperatures, melting

points, etc. were obtained for a number of samples. The glass transition, crystallization, and

apparent de-oxygenation temperatures were measured. There was little difference in the

devitrification temperatures and de-oxygenation temperatures among the various compositions

tested. The onset of devitrification was found to be around 400 °C and oxygen uptake by the

devitrified material becomes significant in this same general temperature range (Minami et al.,

1989; Yoshimura et al., 1988). But, it is only after annealing at 750 °C to 800 °C that these

materials show evidence of the presence of one or more superconducting phases. The details of

these important oxygenation and glass ceramic crystallization studies are to be reported in a

subsequent NASA Technical Memorandum [13].

CONCLUSIONS

Glass formation in the BSCCO system is relatively good. High Tc crystalline ceramics can be

produced from glass ceramics produced from these glasses. The glass ceramics contain signifi-

cant volume fraction of high Tc superconducting phases. These results are supportive proposals

to produce high T c glass ceramics from glass preform monolithic bodies and fibers. More work
is indicated for examining the oxidation reduction behavior of glass formation and the effects on

high T¢ phase production.
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